n维球体积公式

学习完 Fubini定理积分变量替换 之后,基本就可以求解这个问题了。

问题

B1={xRn:x<1},n维单位球BR={xRn:x<R},n维半径为R的球ωn=V(B1)=B11dx,n维球的体积In=0π2cosnθdθ,过程量\begin{aligned} B_1 &= \{x\in\mathbb R^n: |x| < 1\},\quad \text{n维单位球}\\ B_R &= \{x\in\mathbb R^n: |x| < R\},\quad \text{n维半径为R的球}\\ \omega_n &= V(B_1) = \int_{B_1} 1\, dx,\quad \text{n维球的体积}\\ I_n &= \int_0^{\frac{\pi}{2}} \cos^n\theta\,d\theta,\quad \text{过程量} \end{aligned}

求解 ωn\omega_n 的表达式。

步骤

按照周老师的证明步骤进行证明,将证明分为以下三步:

  1. ωn+1=2ωnIn+1\omega_{n+1} = 2\omega_nI_{n+1},Fubini定理

  2. In+1=nn+1In1\displaystyle I_{n+1} = \frac{n}{n+1}I_{n-1},分部积分公式

  3. ωn=2πn2nΓ(n2)\displaystyle \omega_n = \frac{2\pi^{\frac{n}{2}}}{n\Gamma(\frac{n}{2})},数列递推公式

其中 Γ()\Gamma(\cdot)Gamma函数

证明

第一步

积分变量替换 知,nn 为空间上 BR=RnB1B_R = R^nB_1

利用 Fubini 定理,将 n+1n+1 维积分转化为 nn 维和 11 维积分。

ωn+1=x12+x22++xn+1211dx1dx2dxn+1=11{x12+x22++xn21xn+121dx1dxn}dxn+1=201B1xn+12dxn+1=2ωn01(1xn+12)n2dxn+1=xn+1=sinθ2ωn0π2(cos2θ)n2dsinθ=2ωn0π2cosn+1θdθ=2ωnIn+1\begin{aligned} \omega_{n+1} &= \int\limits_{x_1^2+x_2^2+\cdots+x_{n+1}^2\leqslant 1}1\,dx_1dx_2\cdots dx_{n+1}\\ &= \int^1_{-1}\left\{\int_{x_1^2+x_2^2+\cdots+x_n^2\leqslant 1-x_{n+1}^2}1\,dx_1\cdots dx_n\right\}dx_{n+1}\\ &= 2\int^1_0B_{\sqrt{1-x_{n+1}^2}}\,dx_{n+1}\\ &= 2\omega_n\int^1_0(1-x_{n+1}^2)^{\frac{n}{2}}\,dx_{n+1}\\ &\xlongequal{x_{n+1} = \sin\theta} 2\omega_n\int_0^{\frac{\pi}{2}}(\cos^2\theta)^{\frac{n}{2}}\,d\sin\theta\\ &= 2\omega_n\int_0^{\frac{\pi}{2}}\cos^{n+1}\theta\,d\theta\\ &= 2\omega_nI_{n+1} \end{aligned}

第二步

In+1=0π2cosn+1θdθ=0π2cosnθdsinθ=cosnθsinθ0π20π2sinθncosn1θ(sinθ)dθ=n0π2sin2θcosn1θdθ=n0π2(1cos2θ)cosn1θdθ=n0π2cosn1dθn0π2cosn+1θdθ=nIn1nIn+1In+1=nn+1In1\begin{aligned} I_{n+1} &= \int_0^{\frac{\pi}{2}}\cos^{n+1}\theta\,d\theta\\ &= \int_0^{\frac{\pi}{2}}\cos^n\theta\,d\sin\theta\\ &= \cos^n\theta \sin\theta\bigg|_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}}\sin\theta\cdot n\cos^{n-1}\theta\cdot(-\sin\theta)\,d\theta\\ &= n\int_0^{\frac{\pi}{2}}\sin^2\theta\cos^{n-1}\theta\,d\theta\\ &= n\int_0^{\frac{\pi}{2}}(1-\cos^2\theta)\cos^{n-1}\theta\,d\theta\\ &= n\int_0^{\frac{\pi}{2}}\cos^{n-1}\,d\theta - n\int_0^{\frac{\pi}{2}}\cos^{n+1}\theta\,d\theta\\ &= nI_{n-1} - nI_{n+1}\\ \Rightarrow I_{n+1} &= \frac{n}{n+1}I_{n-1} \end{aligned}

第三步

由第二步结论 In+1=nn+1In1\displaystyle I_{n+1} = \frac{n}{n+1}I_{n-1},对 nn 分奇偶讨论:

I2n+1=2n2n+12n22n123I1=(2n)!!(2n+1)!!I2n=2n12n2n32n212I0=(2n1)!!(2n)!!π2\begin{aligned} I_{2n+1} &= \frac{2n}{2n+1}\cdot\frac{2n-2}{2n-1}\cdots\frac{2}{3}I_1 = \frac{(2n)!!}{(2n+1)!!}\\ I_{2n} &= \frac{2n-1}{2n}\cdot\frac{2n-3}{2n-2}\cdots\frac{1}{2}I_0 = \frac{(2n-1)!!}{(2n)!!}\cdot\frac{\pi}{2} \end{aligned}

于是,由第一步结论 ωn+1=2ωnIn+1\omega_{n+1} = 2\omega_nI_{n+1},得

ω2n+1=2ω2nI2n+1=22I2n+1I2nω2n1=23I2n+1I2nI2n1ω2n2  =22nI2n+1I2nI2ω1\begin{aligned} \omega_{2n+1} &= 2\omega_{2n}I_{2n+1}\\ &= 2^2\cdot I_{2n+1}I_{2n}\omega_{2n-1}\\ &= 2^3\cdot I_{2n+1}I_{2n}I_{2n-1}\omega_{2n-2}\\ &\ \ \vdots\\ &= 2^{2n}I_{2n+1}I_{2n}\cdots I_2\omega_1 \end{aligned}

其中 ω1\omega_1 就是一维单位球体积,一维是一条线,则 B1B_1 就是一条长度为 22 的线段,所以 ω1=2\omega_1 = 2,则

ω2n+122n+1=I2n+1I2nI2=(I2n+1I2n1I3)(I2nI2n2I2)=((2n)!!(2n+1)!!(2n2)!!(2n1)!!4!!5!!2!!3!!)((2n1)!!(2n)!!(2n3)!!(2n2)!!3!!4!!1!!2!!)(π2)n=1(2n+1)!!(π2)n\begin{aligned} \frac{\omega_{2n+1}}{2^{2n+1}} &= I_{2n+1}I_{2n}\cdots I_2\\ &= (I_{2n+1}I_{2n-1}\cdots I_3)(I_{2n}I_{2n-2}\cdots I_2)\\ &= \left(\frac{(2n)!!}{(2n+1)!!}\cdot\frac{(2n-2)!!}{(2n-1)!!}\cdots\frac{4!!}{5!!}\cdot\frac{2!!}{3!!}\right)\left(\frac{(2n-1)!!}{(2n)!!}\cdot\frac{(2n-3)!!}{(2n-2)!!}\cdots\frac{3!!}{4!!}\cdot\frac{1!!}{2!!}\right)\left(\frac{\pi}{2}\right)^n\\ &= \frac{1}{(2n+1)!!}\cdot\left(\frac{\pi}{2}\right)^n \end{aligned}

ω2n+1=2(2π)n(2n+1)!!\omega_{2n+1} = \frac{2(2\pi)^n}{(2n+1)!!}

再由 ωn=2ωn1In\omega_n = 2\omega_{n-1}I_{n},得

ω2n=2ω2n1I2n=22(2π)n1(2n1)!!(2n1)!!(2n)!!π2=(2π)n2n(2n2)(2n4)42=(2π)n2nn!=πnn!\begin{aligned} \omega_{2n} &= 2\omega_{2n-1}I_{2n}\\ &= 2\cdot \frac{2(2\pi)^{n-1}}{(2n-1)!!}\cdot\frac{(2n-1)!!}{(2n)!!}\cdot\frac{\pi}{2}\\ &= \frac{(2\pi)^n}{2n(2n-2)(2n-4)\cdots4\cdot2}\\ &= \frac{(2\pi)^n}{2^n\cdot n!}\\ &= \frac{\pi^n}{n!} \end{aligned}

综上

{ω2n=πnn!ω2n+1=2(2π)n(2n+1)!!\begin{cases} \omega_{2n} = \dfrac{\pi^n}{n!}\\ \omega_{2n+1} = \dfrac{2(2\pi)^n}{(2n+1)!!} \end{cases}

对目标结论 ωn=2πn2nΓ(n2)\displaystyle \omega_n = \frac{2\pi^{\frac{n}{2}}}{n\Gamma(\frac{n}{2})},进行验证。

代入 2n2n,得

ω2n=2πn2nΓ(n)=πnn(n1)!=πnn!\begin{aligned} \omega_{2n} &= \frac{2\pi^n}{2n\Gamma(n)}\\ &=\frac{\pi^n}{n\cdot(n-1)!}\\ &=\frac{\pi^n}{n!} \end{aligned}

成立!

再代入 2n+12n+1,得

ω2n+1=2π2n+12(2n+1)Γ(2n+12)=2πnπ(2n+1)Γ(n+12)\begin{aligned} \omega_{2n+1} &= \frac{2\pi^{\frac{2n+1}{2}}}{(2n+1)\Gamma(\frac{2n+1}{2})}\\ &= \frac{2\pi^{n}\sqrt{\pi}}{(2n+1)\Gamma(n+\frac{1}{2})} \end{aligned}

利用公式 Γ(x+1)=xΓ(x)\Gamma(x+1)=x\Gamma(x),得

Γ(n+12)=(n1+12)Γ(n1+12)=(n1+12)(n2+12)Γ(n2+12)==(n12)(n32) 12 Γ(12)=(2n1)(2n3)12nΓ(12)=(2n1)!!2nΓ(12)=(2n1)!!2nπ\begin{aligned} \Gamma\left(n + \frac{1}{2}\right) & =\left(n-1+\frac{1}{2}\right)\Gamma\left(n-1+\frac{1}{2}\right) \\ & =\left(n-1+\frac{1}{2}\right)\left(n-2+\frac{1}{2}\right)\Gamma\left(n-2+\frac{1}{2}\right) \\ & = \ldots = \left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)\dots \ \frac{1}{2}\ \Gamma\left(\frac{1}{2}\right) \\ & = \frac{(2n-1)(2n-3)\cdots1}{2^n} \cdot \Gamma\left( \frac{1}{2}\right) \\ &= \frac{(2n-1)!!}{2^n}\cdot \Gamma\left(\frac{1}{2}\right)\\ &= \frac{(2n-1)!!}{2^n} \sqrt{\pi}\\ \end{aligned}

ω2n+1=2πnπ(2n+1)(2n1)!!2nπ=2(2π)n(2n+1)!!\begin{aligned} \omega_{2n+1} &= \frac{2\pi^{n}\sqrt{\pi}}{(2n+1)\frac{(2n-1)!!}{2^n} \sqrt{\pi}}\\ &= \frac{2(2\pi)^n}{(2n+1)!!} \end{aligned}

成立!!

综上,原命题得证,nn 维单位球的体积公式为

ωn=2πn2nΓ(n2)\omega_n = \frac{2\pi^{\frac{n}{2}}}{n\Gamma(\frac{n}{2})}

计算式

{ω2n=πnn!ω2n+1=2(2π)n(2n+1)!!\begin{cases} \omega_{2n} = \dfrac{\pi^n}{n!}\\ \omega_{2n+1} = \dfrac{2(2\pi)^n}{(2n+1)!!} \end{cases}

参考

[1]. ωn\omega_n 部分的递推,参考了 知乎 - n维球的体积

[2]. Gamma函数部分的递推,参考了 Math.StackExchange - Proving that Γ(n+12)=(2n)!π22nn!\Gamma \left(n+ \frac{1}{2}\right) = \frac{(2n)!\sqrt{\pi}}{2^{2n}n!}


n维球体积公式
https://wty-yy.github.io/posts/32003/
作者
wty
发布于
2021年10月10日
许可协议