CDQ 分治 在oi时候曾经看过CDQ分治,但当时对于偏序这个概念的不理解(以为是什么高级东西),导致一直没有研究清楚CDQ分治,现在回头看CDQ分治,其实理解并没有那么的困难,下面通过举例来理解偏序这个概念,而不是死板的定义。 偏序关系 偏序关系 为一种二元关系(严格的定义可以看百度 偏序关系,需要满足三条性质)(这里简单理解为:作用在两个元素上的符号,如实数域上 ⩽\leqslant⩽、⩾\geqsl 2021-12-07 coding > algorithm #分治
Riemann - Lebesgue 定理 命题1(分段常数逼近) 设 f∈L1([a,b])f\in L^1([a,b])f∈L1([a,b]),则 ∀ε>0, ∃g:[a,b]→R\forall \varepsilon > 0,\ \exists g : [a, b]\rightarrow \mathbb R∀ε>0, ∃g:[a,b]→R,ggg 为分段常数,使 ∫ab∣f−g∣<ε\int_a^b|f-g| 2021-12-02 Math > 数学分析 #Fourier
Fourier 级数入门 第十一周考了期中,感觉裂开(我tcl;任何周期为 2π2\pi2π 的函数都可以表示为傅里叶级数(一种三角级数),然后就可以将难以积分、求导的函数变化为易于积分的三角级数。 定义1(三角级数) 设 ak∈R, k=0,1,⋯ , bk∈R, k=1,2,⋯a_k\in \mathbb R,\ k=0,1,\cdots,\ b_k\in\mathbb R,\ k=1,2,\cdotsak∈R, 2021-11-26 Math > 数学分析 #Fourier
Gauss定理 Stokes公式 上星期讲完了第一型和第二型曲面积分的定义及计算方法,这讲了两个( Newton−LeibnizNewton-LeibnizNewton−Leibniz 公式的推广)定理,在适当的条件下运用可以大大降低计算复杂度,通过 GaussGaussGauss 定理可以将第二型曲面积分转换为体积积分,StokesStokesStokes 定理可以将第二型曲线积分转换为第二型曲面积分,它们的证明方法直接或类似于 2021-11-19 Math > 数学分析 #积分
近世代数 习题&思考 群在集合上的作用,轨道-稳定子定理 需要掌握的: 求群 GGG 的中心, 自同构群,共轭类。 求中心 根据中心的定义求解: Z(G)= {x∈G:∀y∈G,xy=yx}(与所有元素都可交换)= {x∈G:∀y∈G,xyx−1=y} ⟺ 在共轭作用下G的不动点集G0。\begin{aligned} Z(G) =&\ \{x\in G: \forall y\in G, xy = y 2021-11-15 Math > 近世代数 #错题
第一型曲面积分&第二型曲面积分 第一型曲面积分 定义1(第一型曲面积分) 设 S⊂R3S\subset \mathbb R^3S⊂R3 为光滑曲面,f:S→Rf:S\rightarrow \mathbb Rf:S→R,设 r⃗:[a,b]×[c,d]→S\vec{r}:[a,b]\times[c,d]\rightarrow Sr:[a,b]×[c,d]→S 为 SSS 的参数方程,设 π:a=s0<s1<⋯< 2021-11-14 Math > 数学分析 #曲面积分
群在集合上的作用 轨道-稳定子定理 共轭作用 网页链接 轨道,稳定子 网页链接 全部定义 这一节的概念实在是太多了,所以就先列举下这一节出现的所有概念,以便于查找。 群在集合上的作用(群作用):群 GGG 在集合 Ω\OmegaΩ 上的一个作用(简记为 G↷ΩG\curvearrowright \OmegaG↷Ω),若映射 σ:G×Ω→Ω(a,x)↦a∘x\begin{aligned}\sigma : G\time 2021-11-10 Math > 近世代数 #群论
Green公式在限制条件下的证明 Gauss定理 曲面面积定义及求法 这周基本讲完了曲线积分,在图像比较容易刻画的前提下的证明了Green公式,开始进入曲面积分,曲面积分可以看作是二维的参数形式,虽然曲面面积的定义没有定义完备(完备的定义要用测度论的知识),但通过微分的形式,转换为求平行四边形的面积,再求和从而得出了曲面积分的定义。 Green公式(Newton-Leibniz 公式推广) 设 Ω⊂R2\Omega\subset \mathbb R^2Ω⊂R2 为 2021-11-07 Math > 数学分析
一些特殊的群 记录一些《近世代数》(丘维声)书上出现过的一些特殊群的定义。 Zm:={1ˉ,2ˉ,⋯ ,nˉ}\mathbb Z_m:=\{\bar{1},\bar{2},\cdots,\bar{n}\}Zm:={1ˉ,2ˉ,⋯,nˉ}:模 mmm 的剩余类加群。 Zm∗\mathbb Z_m^*Zm∗ 为 Zm\mathbb Z_mZm 的所有可逆元组成的集合(简化剩余类),Zm∗\mathbb Z 2021-11-03 Math > 近世代数
同态 正规子群 商群 群同态基本定理 由于这一节内容前后关联性比较强,为了更清楚的表示定义,命题,定理之间的上下关系,就使用了思维导图,先安利下我用的思维导图网站 ZhiMap,它的好处主要在于可以打数学公式,而且免费,速度很快,手机也可以编辑,它的历史记录功能有点意思,基本可以做到实时保存,感觉应该和 gitgitgit 的原理类似,撤销操作很稳定。 定理的证明思路也一同写在脑图上面了。 推荐直接打开网页版 2021-10-31 Math > 近世代数